Degradation of 17beta-estradiol in aqueous solution by ozonation in the presence of manganese(II) and oxalic acid.

نویسندگان

  • Liying Jiang
  • Lu Zhang
  • Jianmeng Chen
  • Hong Ji
چکیده

Natural estrogens, such as 17beta-estradiol (E2), are the main substances responsible for estrogenic activity found in domestic sewage. In the work described herein, the degradation of E2 has been investigated by single ozonation and catalytic ozonation in the presence of manganese ion (Mn2+) and oxalic acid. The presence of Mn2+ and oxalic acid in the ozonation processes significantly improved the E2 degradation and, hence, the reduction of estrogenic activity in aqueous solution. The addition of Mn2+ and oxalic acid produced many more hydroxyl radicals in the catalytic ozonation system than in the single ozonation system. Oxidation products formed during ozonation of E2 have been identified by means of gas chromatography-mass spectrometry (GC-MS), on the basis of which a possible reaction pathway for E2 degradation by ozonation is proposed. E2 was first oxidized to hydroxyl-semiquinone isomers, and these were subsequently degraded to low molecular weight compounds such as oxalic acid and malonic acid. The latter were easily oxidized by ozone to form carbon dioxide (CO2). The results demonstrate that the ozonation-Mn(2+)-oxalic acid system may serve as a powerful tool for removing E2, and the addition of Mn2+ and oxalic acid is favourable for the complete removal of estrogenic activity induced by steroid estrogens in aqueous solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photocatalytic process using magnesium oxide nanoparticles for amoxicillin removal from aqueous solution

Background & Aim: Excessive consumption of antibiotics and their incomplete metabolization in human and animals, as well as inadequate removal by conventional waste water system leads to the release of these chemicals into the environment. Antibiotics have adverse effects including bacterial resistance, digestive disorders and genotoxic. Therefore the aim of this study was to survey amoxicillin...

متن کامل

Kinetic Monte Carlo Simulation of Oxalic Acid Ozonationover Lanthanum-based Perovskitesas Catalysts

Kinetic Monte Carlo simulation was applied to investigation of kinetics and mechanism of oxalic acid degradation by direct and heterogeneous catalytic ozonation. La-containing perovskites including LaFeO3, LaNiO3, LaCoO3 and LaMnO3 was studied as catalyst for oxalic acid ozonation. The reaction kinetic mechanisms of each abovementioned catalytic systems has been achieved. The rate constants val...

متن کامل

Comparing activated carbon and magnetic activated carbon in removal of linear alkylbenzene sulfonate from aqueous solution by heterogeneous catalytic ozonation process

Activated carbon from pine cone (PCAC) was used as a precursor to prepare Fe3O4/magnetic activated carbon (MPCAC). Here, the removal of linear alkylbenzene sulfonate (LAS) was studied using catalytic ozonation process (COP) in exposure to MPCAC. Subsequently, it was compared with PCAC. Moreover, the effects of solution's initial pH, catalyst dosage, and the time of ozonati...

متن کامل

Degradation of Terphetalic Acid from Petrochemical Wastewater by Ozonation and O3/ZnO Processes in Semi Batch Reactor

Background & Aims of the Study: One of the toxic pollutants in the wastewater of petrochemical industries is Terphetalic acid. In this study, the degradation and mineralization of Terphetalic acid in aqueous environment were studied by Ozonation and O3/ZnO processes in a semi batch reactor. Materials & Methods: This study is an experimental research on a laboratory scale. The st...

متن کامل

Decomposition of Oxalate in Dilute Aqueous Solutions: Evidence for the Strong Synergism of Ozonolysis Combined with Ultrasonic Irradiation

The simultaneous application of ultrasonic irradiation with ozonation was demonstrated to be effective for the oxidation of oxalic acid (H2C2O4/HC2O4/C2O4), a particularly recalcitrant pollutant, to CO2 and H2O. Degradation rates obtained using sonolytic ozonation were found to be more than 16-times faster than predicted by the linear addition of the independent systems. Model calculations and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental technology

دوره 34 1-4  شماره 

صفحات  -

تاریخ انتشار 2013